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A B S T R A C T

This paper introduces a novel neurophysiologically based mobile robot navigation system, which emulates the
dynamics of a rodent’s navigation and spatial awareness cells found in the hippocampus and entorhinal cortex.
The model presented here replicates the functionality of these neurons in their hardware and software coun-
terparts. By using data structures and computational logic that best utilizes currently available processing ar-
chitectures, a cognitive map is created using a unique multimodal source model for place cell activation. Path
planning is performed by using a combination of Euclidean distance path checking, goal memory, and the A∗

algorithm. Localization is accomplished using simple, low power sensors, such as a camera, ultrasonic sensors,
motor encoders and a gyroscope. The place code data structures are initialized as the mobile robot finds goal
locations and other unique locations, and are then linked as paths between goal locations, as goals are found
during exploration. The place code creates a hybrid cognitive map of metric and topological data. In doing so,
much less memory is needed to represent the robot’s roaming environment, as compared to traditional mapping
methods, such as occupancy grids. A comparison of the memory and processing savings are presented, as well as
to the functional similarities of our design to the rodent’s specialized navigation cells.

Introduction

Autonomous mobile robotics have many diverse applications and
domains (i.e., indoor, outdoor, underwater, and airborne). For instance,
indoor applications include: security, rescue, and service mobile robots,
while outdoor applications include driverless automobiles. Underwater
and airborne robot systems include ocean and space exploration robots,
respectively. The success of any autonomous mobile robot is based on
its ability to reliably navigate in its environment. This is especially true
for animals and other living creatures, whose survivability is dependent
on their ability to navigate effectively in their environment. They would
perish if they were unable to relocate food and cache locations, their
home, as well as shelter spots from predators. Navigation, for both
biological creatures and machines, can be defined as the ability to
maintain a course when going from one location to another
(Franz &Mallot, 2000; Trullier, Wiener, Berthoz, &Meyer, 1997).

The basic tasks and capabilities required for accomplishing navi-
gation are localization and mapping. In robotics, the combination of
these two tasks is referred to as the simultaneous localization and
mapping (SLAM) problem (Bailey & Durrant-Whyte, 2006; Durrant-
Whyte & Bailey, 2006; Wallgrün, 2010, chap. 2). Mobile robots using a
SLAM algorithm to both map its environment and localize itself within
that map, do so at a level of adequacy that is based on the fidelity of
their sensory input data. Because autonomous mobile robots have

sensors, actuators and navigation algorithms that cater to their appli-
cation and working environment (Gonzalez-Arjona, Sanchez, López-
Colino, de Castro, & Garrido, 2013; Sariff& Buniyamin, 2006), these
robots can still be very rigid and short coming in their navigation
capabilities. The problem areas that arise in navigation include dealing
with dynamic environments, as well as the need for high precision lo-
calization data for mapping and path planning.

Animals, on the other hand, are masters at navigating in their en-
vironments. For central to biological based navigation is the ability to
travel from one place to another without getting lost (Tolman, 1948). It
was suggested by Tolman in 1948 that for rats and humans to be able to
accomplish various navigation tasks, they must have a cognitive map of
their environment in their head (Redish, 1999; Tolman, 1948). In 1971,
O'Keefe and Dostrovsky (1971) discovered a special type of neuron in the
rodent’s hippocampus that fired only when the rodent was in a specific
location and was aptly named the place cell. It became evident that place
cells were part of the suspected cognitive map and it has been heavily
researched from that point on. Since the discovery of the place cell, the
head direction cell, and the boundary cell were discovered in the rodent’s
hippocampus and its surrounding area, and the grid cell in the neighboring
entorhinal cortex. These specialized brain cells are believed to play a vital
role in the navigation abilities of the rodent. The hippocampus is also
believed to be involved in the storage of new episodic memory (Burgess,
Maguire, &O'Keefe, 2002; Fyhn, Molden, Witter, Moser, &Moser, 2004).
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In addition to cognitive maps used by rodents, many species, such as
spiders, crustaceans, insects, birds, and many mammals are capable of
homing. That is, they continually update an internal vector trajectory
with respect to their previous location to be able to return directly
home (Müller &Wehner, 1988; Redish, 1999). These creatures can do
so even after wandering in its environment for some time. Homing can
also be accomplished in the dark and through unknown areas, and
despite having traveled a circuitous route. This is accomplished through
dead reckoning, which is also known as path integration (PI), as ori-
ginally proposed by Darwin (1873). For the rodent, the neural circuitry
involved is speculated to take place in or around the hippocampus and
its surrounding area.

The remainder of this paper outlines the navigation system designed
around the functional concepts of these specialized rodent’s navigation
and spatial awareness cells. First, the firing and functional character-
istics of these cells are reviewed.

Rodent’s specialized navigation cells

The rodent brain has been studied greatly, particularly the hippo-
campus and its surrounding area for its navigation related cells (Bush,
Barry, & Burgess, 2014; Redish, 1999). These cells include: place cells,
boundary cells, head direction cells (in the subiculum), and grid cells
(in the neighboring entorhinal cortex). The rodent is not the only
mammal with these special brain cells. Mice, rats, and bats have been
found to also have place cells and grid cells (Burgess, Recce, & O'Keefe,
1994; Moser et al., 2014). However, this list is most likely broader. A
brief description of the firing characteristics of these navigation related
brain cells follow and can also be found in (Zeno, 2015; Zeno,
Patel, & Sobh, 2016). Fig. 1a illustrates the location and size of the ro-
dent hippocampus (left and right), while Fig. 1b illustrates the major
components of the hippocampus, via a cross section horizontal slice of
the ventral portion of the hippocampus. The locations of the specialized
navigation cells with respect to the areas shown in Fig. 1b, as well as
their basic behavior are covered next.

Place cells

A place cell (PC) fires maximally when the rodent is in a particular
location of its environment (Bush et al., 2014). A place cell is usually
limited to a single firing field (FF), unless the environment is large.
Thus, many PCs are utilized to map a rodent’s environment. Ad-
ditionally, the firing of a PC is only dependent on location and not di-
rection (in rodents), unless the place field is in a constrained location,

such as a maze corridor. PCs are found mainly in CA3 and CA1 of the
hippocampus (pyramidal cells), and to a lesser degree in the dentate
gyrus (DG) with smaller place fields (Redish, 1999). As described in the
introduction, PCs play an important role in the mapping of the rodent’s
environment, which is typically identified by the term place code. A
PC’s FF size is dependent on its type and location in the hippocampus.
As presented in (Kjelstrup et al., 2008), a place field can be defined as
the area between the points in an environment where the theta phase
precession begins and terminates.

Head direction cells

The head direction (HD) cell fires at a preferred direction (± a few
degrees) of the rodent’s head direction in the horizontal plane, and has
no relation to the rodent’s body position. HD cells are aligned to the
rodent’s allocentric cues found in its environment, but are informed of
motion through vestibular signals. HD cells are found primarily in the
rodent’s postsubiculum (PoS), the anterior thalamic nuclei (ATN) and
the lateral mammillary nuclei (LMN) (Redish, 1999; Taube, 2007).

Boundary cells

The boundary cell (BC) is direction invariant and location specific in
its firing. The BC typically has a single FF, which is dedicated to a
particular boundary or border in the rodent’s roaming environment.
BCs can be found in the medial entorhinal cortex (MEC), parasubiculum
(PaS) and subiculum (Bush et al., 2014). Additionally, it is believed that
there are boundary vector cells (BVCs) in the subiculum which fire
according to a fixed distance and direction to a boundary (Derdikman,
2009; Lever, Burton, Jeewajee, O'Keefe, & Burgess, 2009). From here
on, we will use BVCs in our system description and will simply desig-
nate them as BCs.

Grid cells

The grid cell (GC) is a unique spatial awareness brain cell found in
the entorhinal cortex (EC) of a rodent. GCs are predominantly found in
layer II of the medial entorhinal cortex (mEC), which is located one
synapse upstream of the PCs in the hippocampus (Fyhn, Hafting,
Treves, Moser, &Moser, 2007; Hafting, Fyhn, Molden, Moser, &Moser,
2005). The GC differs from the PC and BC such that it has many spatial
FFs. Each GC’s FF maps over the rodent’s entire roaming environment
in a hexagonal lattice formation. At the node of each equilateral tri-
angle in the lattice is the location of a single FF of a GC. The FFs of a GC,

Fig. 1. The rodent brain. (a) In yellow is the left hemisphere hippocampus. (b) Anatomy of hippocampal formation and parahippocampal region (horizontal slice A in part a).
Abbreviations: Carnu amonis (CA), dentate gyrus (DG), lateral entorhinal cortex (lEC), medial entorhinal cortex (mEC), parasubiculum (PaS), and presubiculum (PrS). Picture adaptions:
Figure (a) from (Little, 2007), and (b) from (Moser et al., 2014).
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which creates a hexagonal lattice across the environment, is defined
shortly after a rodent is introduced to a novel area (Barry & Burgess,
2014). It is suggested that the lattice is anchored in orientation and
phase to external landmarks and geometric boundaries (Hafting et al.,
2005; McNaughton, Battaglia, Jensen, Moser, &Moser, 2006;
Moser &Moser, 2008). Additionally, each FF of a GC is direction in-
dependent. Although, there do exist conjunctive grid cells in the middle
and deeper layers of the entorhinal cortex, which fire only on a given
absolute direction (Moser &Moser, 2008; Sargolini et al., 2006;
Wyeth &Milford, 2009). It should also be noted that the FFs of GCs can
differ in three different ways: size, orientation, and phase. The GCs FF’s
size increases monotonically from its dorsal to ventral location in the
mEC (Moser, Kropff, &Moser, 2008; Moser &Moser, 2008).

Rodent navigation system computational models

There are currently two prevailing computational model classes for
describing the stimuli configuration required for the grid cell firing
pattern. The first is the continuous attractor network (CAN) model,
which in simplest terms, is a neural network based model that describes
the stabilization or convergence of a multistate system to a single state
over time, by way of synaptic interaction between excitatory and in-
hibitory neurons (Boucheny, Brunel, & Arleo, 2005; Shipston-Sharman,
Solanka, & Nolan, 2016). An example CAN model that describes the role
of PI related cells in the firing of GCs is outlined in (Burak & Fiete,
2009). The second computational model, is the oscillatory interference
model (Burgess, 2008). This model is typically simulated using spiking
neural networks on non-robotic systems (Erdem&Hasselmo, 2012,
2014; Giocomo &Hasselmo, 2008). Both working models have strong
pros and cons to their validity. However, we chose the interpreted re-
lationship between the various specialized navigation cells previously
covered using the oscillatory interference model presented in
(Erdem&Hasselmo, 2014). Our choice was driven by how well this
model fits our functional interpretation of how these special cells in-
teract. Fig. 2 illustrates the basic connectivity of the chosen oscillatory
interference model.

Oscillatory interference model

The oscillatory interference model relies on HD cells, based on their
preferred direction and the current head direction of the rat, to mod-
ulate persistent spiking cells (oscillators) who’s frequency is a function
of the distance traveled by the rodent over a delta time-period. Each
oscillator has a given offset phase and frequency scaler. Each GC is fed
by the same input network of oscillators in a neural network layer
configuration, then the output of these GCs feed PCs. Thus, the HD cells
and oscillators act as a PI system, which feeds the GCs. The GCs will fire
when their FFs overlap the physical location any PC is tuned to. The
oscillatory interference computational model for the implementation
presented in (Erdem&Hasselmo, 2014) is as follows:

∫= +ϕ π b d τ dτ(t) 2 (ft ( ) )
t

i,j j 0 i (1)

= + −ϕ ψs (t) H(cos( (t) ) s )i,j i,j i,j thr (2)

∏=
∊

g (t) s(t)j
s Sj (3)

where ϕi,j is the persistent spiking cell’s phase modulated by the ith
head direction cell and projecting to the jth grid cell, ƒ is the frequency,
bj is the scaling factor for all persistent spiking cells projecting to the jth
grid cell, si,j is the persistent spiking cell signal, ψ is the phase offset, sthr
is the threshold, H is the Heaviside function with H(0) = 0, g is the grid
cell signal, and Sj is the set of persistent spiking cells projecting to the
jth grid cell.

Proposed simplified path integration-grid cell firing model

Removing the neurophysiological implementation details, as de-
scribed in the CAN and oscillatory interference model results in a
simplified functional module that can replace the GCs and the path
integrator neuron circuitry. As previously described, the PI related in-
puts to the persistent spiking model are the HD cells and distance tra-
veled information. From a hardware implementation view point,
heading information from a microelectromechanical systems (MEMS)
gyro (vestibular data) can replace the HD cells, and distance traveled
information in delta time (ʃ0t di(τ) dτ) can be replaced by distance data
gathered from motor encoders (proprioceptive data). The distance
traveled, is assumed to be straight segment movements. Therefore, the
travel vector that emerges from the combined path integrator and GCs
module, in moving from one point in the environment to another, is of
magnitude d and at heading θ, or vector d = (d, θ). The travel vectors
of the mobile robot presented in this paper are acquired and trans-
formed into Cartesian coordinates by a microcontroller. Our model
maps the functional firing characteristics of a GC to a Cartesian co-
ordinate system. Being that GCs are neural network based, this might
not be a perfect one-to-one comparison, however, from a top-level view,
there are many functional similarities.

In our system, the x, y coordinates for an internally stored Cartesian
coordinate based map, are found by using the sine and cosine functions
on the mobile robot’s tracked allocentric heading θ. This is similar to
the cybernetic models of PI found in (Strösslin, Chavarriaga,
Sheynikhovich, & Gerstner, 2005), and also presented by Mittelstaedt as
described in (Redish, 1999). The travel vector to coordinate equation
used is as follows:

= + −θx d sin( ) xk k k k 1 (4)

= + −θy d cos( ) yk k k k 1 (5)

The terms xk−1 and yk−1 represent the Cartesian coordinates of the
robot’s last stop or turn. For k = 0, the values of these terms, (x−1,
y−1), are defined as (0, 0). This represents the initial starting location
(home) of the robot. Fig. 3 shows the graph assignment with respect to
“home” and an initial allocentric bearing of 90° (θ = 0° for the robot’s
internal calculations).

Mobile robot sensory input

Before going into detail of our proposed neurophysiological based
navigation system, we will cover the sensors used by our robot, known
here after as ratbot, to obtain information about its environment.

Idiothetic sensors for path integration

Heading sensor
As previously described, the ratbot uses the InvenSense MPU6050,

MEMS – 6 axis, accelerometer and gyroscope for heading data, which is
used in place of the HD cells. Specifically, the yaw rotational axis of the
gyroscope is used to determine the robot’s heading. With MEMS based
gyroscopes, however, there is a constant drift. To compensate for this
drift, the gyroscope measurement data is sampled in a loop at the be-
ginning of the robot’s main program, from which an average drift rate is
derived. This drift rate is subtracted from all future reads of the MEMS
gyro. However, since the drift rate is not perfectly constant, this value
will slowly drift as well. The graph in Fig. 4 shows how the measured
heading still drifts when the gyroscope is stationary over a 12-min in-
terval. The drift is approximately 15 degrees in this time frame, which
works out to be approximately 0.02 degrees/s. The initial, un-
compensated drift rate was measured at 0.47 degrees/s. This, of course
is just the static error. There are three phases of movement during the
turning of the robot in which additional errors can occur: (1) initial
acceleration, (2) constant velocity, and (3) deceleration. Since the turn
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rate is a rotational velocity measurement, there will be rate averaging
occurring over these three phases.

The ratbot’s heading θ via use of the gyroscope is calculated as
follows:

= + − ∗θ θ ω ω( ) Δtprev d (6)

where θ is the current heading, θprev is the previous heading, ω is the
measured gyro’s angle rate of change (16 bit A/D value) at Δt

microseconds after the previous gyro rate measurement, and ωd is the
drift rate of the sensor (measured average at startup).

As with rodents and other animals, PI error is reset by observing
known external distal cues, which allows them to become certain again
of their local or global location (Hafting et al., 2005; Hardcastle,
Ganguli, & Giocomo, 2015; Hayman & Burgess, 2015). Autonomous
systems have found that using sensors that capture allothetic stimuli,
such as visual recognition hardware and software, greatly helps
with this area (Hafner, 2005; Strösslin, Sheynikhovich,
Chavarriaga, & Gerstner, 2005; Wyeth &Milford, 2009). Therefore, the
use of some form of allothetic sensor on the mobile robot is imperative

Fig. 2. Architecture representation of the persistent spiking computational model which drives the selection of GCs and PCs as presented in (Erdem&Hasselmo, 2014).

Fig. 3. A conceptual overlay of an internal Cartesian graph representation of the robot’s
navigation environment. The yellow circle represents the robot’s home and starting lo-
cation, while the green circle is a goal location (e.g., food or water). The PI algorithm
always assumes the starting position to be at the origin (0, 0) of an imaginary graph. The
black vectors represent the robot’s path, while the red vectors (Rn) represent calculated
homing vectors. θi is the robot’s allocentric heading.

Fig. 4. MPU6050 post drift compensated gyroscope data.
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to its autonomous capabilities. The allothetic sensors used on the ratbot
are covered shortly.

Motor encoders
The ratbot uses two Devantech 12 V, 30:1 gear motors with en-

coders. A Daventech MD25 motor controller board is connected to these
motors for digital control of H-bridge motor drivers, as well as data
acquisition (i.e., motor encoder values, supply voltage level, etc.) via a
PIC microcontroller and a serial interface. The main controller of the
ratbot sends data to, and receives data from, the MD25 to regulate the
movement of the ratbot over a serial communication interface, and
collect encoder values to derive distance traveled. The encoder values
are summed by the PIC microcontroller over time, and can be zeroed
out at any time. The encoder values collected are in degrees of the
wheel’s rotation at a resolution of 2 degrees.

Allothetic sensors

Ultrasonic range sensors
The ratbot is equipped with five ultrasonic (sonar) sensors to achieve

an object detection coverage of approximately 180°, as shown in Fig. 5.

These sensors are located around the front of the ratbot: one forward, a
pair of left and right angled “whiskers”, and a pair of left and right side
facing ultrasonic sensors.

The ultrasonic sensors used on the ratbot are the HC-SR04 Ultrasonic
Range Sensor. The ultrasonic sensor is obviously not as fast or re-
sponsive as light based systems, nor as accurate as an optic range finder.
Additionally, the beam width of the ultrasonic sensor is much wider and
doesn’t have the same range capabilities as an optic range finder.
However, the ultrasonic sensor does have the advantage of not being
affected by the color and texture of the target. For object detection at
relatively short distances, the target offset error due to the larger beam
width can be greatly reduced. The ultrasonic sensor’s beam angle is
defined as the total angle, where the sound pressure level of the main
beam has been reduced by 3 dB (half power) on both parts of the center
axis, represented here by θ. This angle is obtained using acoustic design
charts based on the results of the following equations:

= = =λ v/ f (343 m/s)/(40 k cycles/s) 8.6 mm (7)

= =λD/ 13 mm/8.6 mm 1.5 (8)

where, wavelength of the sound pulse λ is equal to the speed of sound v
divided by the pulse frequency f. The ratio of the diameter of the round
transmitter (infinite planar baffle) to the wavelength (D/λ), determines
the sound beam’s width or angle θ of 20° at 3 dB.

The ultrasonic sensors are used for object detection and avoidance.
The data collected from these range sensors, along with pose data, are
used for BC FF activation and initialization, which becomes part of the
navigation system’s cognitive map.

As described, the ultrasonic sensor is unable to collect the level of
detail needed to replace a visual system. Particularly, the details re-
quired to identify landmarks and goals, and thus perform a reset of the
PI error. For this, the ratbot uses a visual system and a slightly en-
gineered environment.

Visual system
The ratbot uses the Pixy Cam (CMUcam5) from Charmed Labs for

landmark and goal location recognition. The Pixy can swivel on a two
degrees of freedom platform, via two mini servos. One servo rotates the
camera along the horizontal axis, while another servo rotates the
camera along the vertical axis. Currently, the camera is used in a sta-
tionary position, pointing directly forward and downwards at a 40°
angle with the parallel plane of the ratbot’s platform. The camera lens
field of view (FOV) is 75° horizontal and 47° vertical. Fig. 6 illustrates

Fig. 5. Ultrasonic range sensors covering the front of the ratbot. Five sensors giving a
forward looking 180° field of view coverage.

Fig. 6. The ratbot’s Pixy Cam downward looking FOV. Illustration is a view from the ratbot’s right side.
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this configuration of the ratbot’s camera.
Instead of using neural networks and vision data compression al-

gorithms to record and compare gathered visual data to, as is done in
reviewed systems (Zeno et al., 2016), the Pixy Cam identifies objects by
color, using a connected components algorithm to determine where one
object begins and another ends. Additionally, using more than one color
placed next to each other (color code), allows for many more objects to
be uniquely identified. For the ratbot’s environment, goal places (i.e.,
home, water and food), and unique landmark locations are marked by
color coded cards. An example of this is shown in Fig. 7a and b. The
identities of these color codes are pre-programmed into the Pixy Cam’s
flash memory using the PixyMon application.

Therefore, a tradeoff is made between having an ANN based visual
recognition system, which doesn’t require an engineered environment,
versus using a simple color-code based system, which requires very
little processing power and resources, but a slightly engineered en-
vironment. Since the aim of this paper is to test the core of the navi-
gation system, the actual vision system used is of little consequence.
However, the processor onboard the Pixy Cam does calculate relative X,
Y position data with respect to the object’s location in the camera’s field
of view. Additionally, the angle of the color-code image, with respect to
the axis running between the two or more colors, is calculated and is
available for use. This is displayed as ϕ in Fig. 7b. Therefore, the color-
coded object’s pose can be translated into an allocentric pose, based on
the robot’s current pose data.

Rodent inspired mobile robot navigation system

It can be inferred from the described firing characteristic of the
rodent’s navigation specific cells that simplification of their con-
nectivity from a neural network based system to a computational ar-
chitecture results in a loss of low level understanding of their true in-
teractions. However, it can be argued that much of the connectivity of
this part (or any) of the rodent brain is not well understood in the first
place. Thus, this paper presents a higher level functional framework to
characterize what is known or interpreted to be true about these brain
cells. This allows for testing the understanding at a top level, and
helping to direct further studies at the lower levels (i.e., neural net-
works). Additionally, what is found to be more optimal for autonomous
navigation can be utilized in mobile robots. The following describes the
mapping of the rodent’s navigation specific cells to their hardware and
software counterparts.

Path integration

PI systems, whether natural or manmade, requires the integration of
some form of compass (sense of direction) and distance cues
(Goldschmidt, Dasgupta, Wörgötter, &Manoonpong, 2015; Wolf,
2011). Thus, in a rodent, PI is achieved through the integration of the
HD cells with self-motion cues (Stackman, Clark, & Taube, 2002), as
illustrated in the previously described oscillatory interference model.
Non-external self-motion information comes from proprioceptive sti-
muli (e.g., muscle movement signals), and vestibular stimuli (e.g., inner
ear angular head velocity signals). Self-motion information can also
come from external sources, such as visual and tactile information. For
the ratbot’s navigation system PI is achieved using a MEMs based gy-
roscope for the angular velocity data, and wheel encoders from the two
rear motors for distance measurements. Thus, HD cell firing data has
been directly replaced by a gyroscope and the distance covered in Δt by
the motor encoders.

New multimodal navigation model

As proposed in (Bush et al., 2014), grid cells and place cells are
speculated to not be successive stages of a processing hierarchy, but
complementary. This is contrary to the oscillatory interference model
presented earlier, but clearly an optional addition to the model. Ad-
ditionally, BCs have a great influence on the creation of PC fields
(Lever, Burton, Jeewajee, O'Keefe, & Burgess, 2009; Stewart, Jeewajee,
Wills, Burgess, & Lever, 2014). Factoring in that taxon navigation takes
place by visual input primarily, works into a newly derived model by
this paper as to how PCs are activated. As illustrated in Fig. 8, in the
new multimodal model, there are three parallel sources which feed the
input to the PCs. Firstly, as illustrated and described in (Bush et al.,
2014), active BCs for a particular environment can source a PC to fire
near the intersection of two adjacent boundaries. Similarly, our model
produces place fields at the ends of boundaries. Secondly, unique lo-
cations, such as landmarks and goals locations, can be learned from the
visual data, thus creating place fields which can be used to help reduce
PI error. Thirdly, the metric, coordinate based system used by the ratbot
to map out its environment is similar to the function of GCs in the ro-
dent’s brain, which source the activation of PCs for cognitive map
generation, (i.e., place code), as well as allow for PI in complete
darkness (no allothetic stimuli).

Fig. 7. Demonstration of the Pixy camera. (a) The ratbot’s Pixy camera is connected to a laptop to demonstrate what the camera sees. The color code card (red and green) represents a
preprogrammed goal or landmark that has been recognized. (b) A screen shot of the PixyMon program, which is used offline to program the color codes and display what the Pixy camera
sees, such as color code identification (e.g., s = 12), and its relative angle (e.g., ϕ= −90°).
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Navigation system implementation

To better understand how the new multimodal navigation system
works, we will describe the hardware connectivity and data flow of the
total system. Then we present the cognitive map and spatial awareness
created through data structures on the central processor and a field
programmable gate array (FPGA) silicon chip.

Hardware system design

Central processor
The main agent of the ratbot is the central processor board, an

Arduino Mega 2560, which uses an Atmel® ATmega2560 micro-
controller, and is integrated to the external sensors and actuators pre-
viously covered. The ATmega2560 microcontroller is limited to 256
Kbytes of program memory and operates at 16 MHz. Additionally, the
central processor board uses many of its 54-digital input/output pins
and four serial ports to gather data from sensors, communicate with
another microcontroller boards, interface with the Pixy Cam (discrete
signals), and communicate with the motor controller board and gyro-
scope, see Fig. 9 and the pictures of the ratbot in Fig. 10. Thus, the
central processor gathers data about the environment through the ul-
trasonic range sensors, camera, motor encoder data, and MEMs based
gyroscope (via I2C bus), and makes decisions on the next action to take,
based on the sensor data and its current motivation state.

The basic decision making of the core multimodal model, illustrated
in Fig. 8, is carried out in the central processor. Possible new BC, visual
place cell (VPC) and PC FFs are identified in the central processor’s
main loop program. The pseudo code for the main loop program is
listed in Fig. 11. The data from these newly identified VPC and PC FFs
are stored in the central processor’s memory. The data structures that
represent these navigation specific cells of the rodent will be covered
shortly.

FPGA
The direction and coordinate data for the BC FFs are sent to the

FPGA from the central processor through a serial interface. The FPGA
checks in parallel the activated BC modules as to whether the current

identified BC FF is new or not. The FPGA will then either activate a new
cell module and save the relevant data in it, add to a currently activated
BC, or simply ignore the redundant data sent. The FPGA also performs a
connected components algorithm that is specific to the BC. This allows
for a single BC to fire over a continuously connected boundary, as is
performed in the rodent’s brain. An illustration of the BC module ar-
chitecture, which is designed into the FPGA is given in Fig. 12.

Software based representation of navigation and spatial awareness cells

As can be seen from the main loop pseudo code outlined in Fig. 11,
the action that takes place by the actuators (motors) of the ratbot is a
function of the agent’s motivation state. Thus, the motivation state in-
tegrates with the core multimodal navigation model, and is influenced
by the current state of the environment. The motivation states of the
ratbot’s navigation model includes: hunger, thirst, tired, lost, fight or
flight (predator threat), and curious (specifically: in a new area and
goes into explore mode). The explore mode is the initial navigation
state resulting from the curious motivation state of the ratbot. In this
mode the ratbot randomly navigates its environment, while mapping
the area by creating a place code using BCs, VPCs and PCs as shown by
the multimodal model in Fig. 8. This phase continues until the ratbot
has discovered the food and water goal locations, and saved the path
information between the goals and home. How these specialized neural
cells relate to each other logically and are stored is presented next. The
BC data structures that are managed by the FPGA has already been
described, and its overall importance will be covered next as well.

Place cell data structures and the cognitive map
As with the PCs in the rodent’s hippocampus, the ratbot’s PC data

structures records key locations in its environment. Additionally, they
are linked together to represent paths found or typically taken. Thus,
the ratbot constructs the place code or cognitive map in the form of a
topological graph representation with stored allocentric location in-
formation (Konolige, Marder-Eppstein, &Marthi, 2011; Thrun, 2002).
The ratbot’s PC data structure stores the following information: ID
number, type, Cartesian coordinates, several pointers that can be in-
itialized to point to other PC structures, and the Euclidean distance

Fig. 8. The proposed multimodal model of the PC firing field sources.
The cognitive map located in the central processor and FPGA will
possess BCs, visual place cells (VPCs) and PCs. The output from the PI
source to the PCs represents the interaction of PI data with GCs
(pseudo coordinate data), which in turn enable the place fields.
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Fig. 9. Top-level block diagram of the ratbot’s neurobiological based navigation system. Shown are the ratbot’s sensors, actuators and computational resources.

Fig. 10. The ratbot and its hardware.
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between connected PCs (to be used for the A∗ path planning algorithm).
The ID is merely a sequential number given to the PCs as they are
found. The type is a location descriptor, such as: a goal (color-coded
marker on floor), a turn, landmark or some unique location, or
boundary corner. A goal place cell (G) is the location of a particular
goal (e.g., home, water, or food). A turn cell (TC) is the name given to a

PC which marks the turn location for the robot at the end of a boundary.
Boundary corner cells indicate a dead end that is created by two in-
tersecting boundaries. This type of PC is very much like a unique
landmark location.

With the current visual capability of the ratbot, the VPCs are cur-
rently pre-programmed into the microcontroller that collects visual

Fig. 11. Central processor’s main loop pseudo code.

Fig. 12. BC implementation in the FPGA.
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data from the Pixy Cam. Thus, the identity of each color-coded marker
represents the VPC dedicated to that goal or landmark. Future versions
of the proposed navigation system will use an artificial neural network
(ANN) to learn and remember these unique locations.

Goal memory
As defined in (Redish, 1999), goal memory in a rodent plays a role

in route planning to goal locations, and is based on the position of the
animal and its current needs or motivations. Additionally, goal memory
requires input from the place code to accomplish route planning. Our
implementation of goal memory is a linked list of PC structures (place
code) defined above. During the exploration phase, the path from a goal
location found by the ratbot (e.g., food or water) to the home location is
recorded in a linked list. The steps that occur to find the path from a
found goal to home during exploration is as follows:

(a) Random exploration until a goal location is found (water or food).
(b) Dedicate a place cell for this goal location (store coordinates).
(c) Calculate vector home from goal location and home coordinates.
(d) Turn towards home based on direction calculated in step (c).
(e) Head towards home, checking visual data for home recognition,

distance traveled and barrier detected.
(f) If barrier is detected, go into wall-follow mode, else go to step (h).

Record boundary vector cells as robot moves along barrier. Use
scan and backtrack algorithm if dead end is found, else search for
opening towards home.

(g) If path was found blocked in step (f) and opening is found, go to
step (b) and use TC for transition point around barrier in place of
goal location.

(h) If home is recognized, go to home location and stop, else go to step
(e).

(i) The path from the goal found to home should now be stored in
linked list (e.g., G1 → TC1 → G0). Save length of path as edge value
for this path (the saved path represents goal memory).

(j) Return to the goal just found by reverse traversal of the linked list
path just stored in the place code (e.g., G0 → TC1→ G1).

(k) Go back to step (a), unless all goal locations have been found.

Software system design
Our software block diagram is designed after the computational

spatial cognitive model used in (Barrera &Weitzenfeld, 2007, 2008).
We broke our software functional blocks into similar logical blocks in
that literature. Fig. 13 illustrates the block diagram of the ratbot’s na-
vigation software system.

Localization and path planning

Localization

The ratbot initially localizes itself to its environment based on its
starting location and heading at its home position, as is illustrated in
Fig. 3. The initial anchoring of spatial orientation of the ratbot’s co-
ordinate system is similar to the way a rodent’s grid network (GC FFs)
becomes aligned with respect to external landmarks shortly after being
introduced to a new environment (McNaughton et al., 2006;
Moser &Moser, 2008). The use of both allothetic and idiothetic data is
essential in adding spatial information to memorized visual information
(Filliat &Meyer, 2003). The occupancy grid is an example of a metric or
grid based traditional (non-biological based) fine-grained localization
and mapping technique which shares some similarities to our neuro-
physiological based system. However, occupancy grids rely on highly
accurate pose data with respect to a single global coordinate system.
The pose system is typically a combination of both odometry and ex-
ternal (environment sensing) based sensors. The robot’s area is divided
up into equally sized squares. Each internally represented square, in the
robot’s memory, is given a probability of being occupied. This value is

based on sensor readings, such as sonar sensors, which is typically re-
presented by a two-dimensional Guassian equation (Gonzalez-Arjona
et al., 2013; Grisettiyz, Stachniss, & Burgard, 2005; Meyer-Delius,
Beinhofer, & Burgard, 2012; Thrun, 2003). Due to the amount of detail
collected for the map of the occupancy grid, and the increasing number
of squares for large areas, the memory requirement becomes un-
bounded, as well as the time to map the area. The ratbot, however, only
creates a place code with a select group of salient entities (i.e., goals,
turns, and landmarks) and BC mapped areas for internal boundaries.
Comparisons between the occupancy grid localization and mapping
method and our neurobiologically based system occur throughout the
remainder of this section due to their many similarities.

Since idiothetic data is cumulative, so is the error. Thus, after time,
the accrued PI error becomes too great for a robot to rely on its internal
position estimate. Additionally, allothetic information can be mis-
leading due to different locations having similar views or representa-
tions (perceptual aliasing) (Arleo, Smeraldi, & Gerstner, 2004; Hafner,
2008; Wyeth &Milford, 2009). The ratbot uses a level of confidence
function to keep the PI error bounded.

Level of confidence calculation
The ratbotminimizes PI error by performing timely resets based on a

calculated level of confidence (LoC). The LoC can be as simple as an
allotted amount of time before a robot needs to return home to re-
calibrate (Arleo & Gerstner, 2000), to being a function of the location
delta between an observed and previously recorded PC FF location to
current PI data, or a similar PC based comparison algorithm (Jauffret,
Cuperlier, & Gaussier, 2015). The ratbot’s LoC is calculated using a
combination of these two methods.

Due to the constant drift over time of the ratbot’s gyroscope, as
discussed in the sensors section, the LoC requires a time element to its
calculation. Additionally, there will be an assumed level of systematic
and non-systematic errors occurring with each turn the ratbot makes. A
threshold is set such that if the LoC decreases to a certain point, BC, PC,
and VPC FFs will no longer be assigned to the cognitive map. Since the
true accuracy of the PI system is not known, the ratbot performs ver-
ifications of already learned place fields (i.e., goals and landmarks) it
comes across during any of its navigation modes, if the LoC is above the
threshold. The LoC is adjusted in such cases. If the ratbot becomes lost,
such that it is having to be reset too often by too great of a differential
in pose, then the ratbot will search for home to recalibrate with its home
base and initial heading.

Place and boundary field initialization accuracy
The global or allocentric location of barriers detected via ultrasonic

sensors, and goal locations detected via the ratbot’s camera, are calcu-
lated by translating their relative position to, and direction from, the
ratbot’s inertial frame, as illustrated by the lines on the ratbot in
Fig. 14a and b. Only the front and side ultrasonic sensors are used in the
creation or verification of BCs. Fig. 14a illustrates how the ratbot reacts
when the “whisker” sensor detects an object which becomes too close in
range (pre-defined threshold) with respect to the ratbot’s path. The
ratbot will stop and rotate until a measurement from the side sensor hits
a minimum, indicating a near parallel position to the object, see
Fig. 14b. The data from the side sensor is then stored in the FPGA for
the BC module. Boundary detection occurs in the sonar data processing
and affordances portion of the navigation software, as illustrated in
Fig. 13.

As previously covered in the Ultrasonic Range Sensors subsection,
the large beam width of a sonar sensor affects the accuracy of a detected
barrier’s or object’s actual location. Even with perfect PI, the actual
location of a detected object is described statistically, as found with
occupancy grid mapping. However, at short distances from the object
and for long objects, such as walls, this is not so much of an issue, due to
the integration of the locations detected into a single, continuous ele-
ment by the FPGA. Additionally, where walls, boundaries or barriers
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end can be discerned and maneuvered around with real time sensing.
Only with mapping smaller objects does accuracy become a real issue.

Route planning

There are two methods to the ratbot’s ability to perform path
planning. The first method is simply following the paths stored during
exploration to go from one goal to another. These are not necessarily
optimal paths, but they were found by following a set routine to return
home, which is based on the rodent’s use of homing (trying to be as
direct as possible). This type of navigation uses goal memory and is
designated as local navigation.

The second method finds a new route from a new or previously
dedicated PC FF to another stored goal location is designated as way-
finding. This form of navigation allows for changes to occur in the
environment and gives the ratbot the capability to reroute on the fly.

The BC FFs stored in the FPGA come into use in this route planning
method. The ratbot performs the following sequence of events to find a
new path:

(1) Create line equations for the target path and for each BC that has
multiple locations assigned to it (e.g., a wall).

(2) Check to see if the target path intersects any of the recorded
boundaries.

(3) If no intersection (blockage) is detected, then proceed straight to-
wards target. Go into exploration mode if an unrecorded barrier is
found in the ratbot’s path.

(4) If an intersection is found, add the TCs associated with this BC and
perform the A∗ algorithm on this graph.

(5) If the A∗ algorithm fails to find a previously found goal, then ex-
ploration is required.

Fig. 13. Software block diagram of the ratbot’s neurophysiological based navigation system.

a) b)
Fig. 14. Recording of BC (BVC) location and angle of incident. (a) The right “whisker” sensor detects a barrier (grey rectangle) to be too close (threshold range), so the ratbot stops and
rotates. (b) The distance measured from the side ultrasonic sensor is translated to a global (allocentric) reference frame from the ratbot’s inertial frame.
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The A∗ path planning algorithm variant of the Dijkstra algorithm
was chosen because it best aligns with the concept of how rodents,
animals, and insects follow a straight vector (minimal Euclidean dis-
tance) during homing. For the A∗ heuristic function, which performs a
least-cost path algorithm on the nodes (PCs), is as follows:

= +f(x) g(x) h(x) (9)

where g(x) is the sum of the distance between the initial position and
the current node (PC) being examined, and h(x) is the Euclidean dis-
tance (straight line calculated from stored coordinates) from the current
node to the target node (PC FFs). The benefits of using A∗ over Dijkstra
is covered next in the analysis section.

Tests and results

Path integration test

The first test we put the ratbot through was to test its PI capabilities
without the use of any external stimuli data other than the data ob-
tained from the ultrasonic sensors for barrier detection. The ratbot was
programmed to record its present position in Cartesian coordinates
from its travel vector at each barrier it came to in a 5 m× 5 m, open
center, bordered area. At each boundary it came to, the ratbot would
take a right turn of approximately 100°. After reaching a pre-
programmed number of turns (2, 3, 4, 5 & 6), the ratbot calculated a
vector to home, turned the appropriate number of degrees to obtain the
calculated heading, then traveled the calculated distance to where it
believed home to be, as illustrated by the red vectors in Fig. 3 for turns
of 2 (R1), 3 (R2), and 4 (R3). A total of 12 runs were performed (a small
sample size, but the outcomes were very representative of what was
observed in other tests). The delta distance error from home and the
stopping position of the ratbot ranged from 1.3 cm to 21.6 cm for an
average of 8 cm.

Local path planning and goal memory demonstration

Morris water maze test
The ratbot was next tested in a variant of the Morris water maze

(Morris, 1984; Vorhees &Williams, 2006) using all sensors (including
its camera). Instead of a circular area, a 5 m× 5 m square area was
used. Due to the ratbot’s narrow, local FOV that is created with its
camera facing down at a 40° incline, see Fig. 6, its ability to find the
“hidden” platform can be thought of as being tactile rather than visual.
Fig. 15 illustrates the dimensions of the local visibility of the ratbot’s
camera as currently situated, and as shown in Fig. 7b.

The Morris water maze test environment was set up similar to that
shown in Fig. 3. However, the “platform” or color-coded marker was
placed at a diagonal to the home position. This created the greatest
distance between the home and platform markers. Once in the explore
mode, the ratbot found the platform along its search path, as it took
approximately 100° turns from boundaries. After reaching the platform,
the ratbot recorded the Cartesian coordinates for this newly defined PC
FF, then calculated its return vector home. The ratbot then proceeded
home. After reaching home, the ratbot calculated the vector to the
platform, turned the appropriate angle and headed to, and reached, the
platform again. Thus, demonstrating its quick learning and spatial
awareness capabilities. This procedure is different from the original
Morris maze task, such that the rodent is usually removed from the
platform and placed back at the starting platform. This could be ac-
complished with the ratbot, by using a PI reset button that is connect to
the central processor. By pushing the PI reset after placing and rea-
ligning the ratbot to its initial pose at its home location, its initial po-
sition of (0, 0) and heading of 0° would be restored.

Single interior barrier test
The latest environment configuration the ratbot’s navigation system

has been tested in, separates a single goal location from home with an
internal boundary structure, as illustrated in Fig. 16. The ratbot follows
the exploration steps listed in the above Goal Memory subsection. Since
a barrier is located between the goal and home, decision making logic is
required for a wall-following mode which allows the ratbot to search for
and find an open path home, as well as send BC FF data to the FPGA. In
the process, a TC FF is created and stored in the place code, and is used
by the goal memory for path planning.

This experiment exemplifies the use of the place code for a non-
direct line of site path. As was observed in multiple runs of ratbot in this
environment, the success of performing this wayfinding task, after the
path has been learned, is primarily a function of the accuracy of the PI
data. A rodent uses local cues, such as the visual identification of the
barrier’s corner to aid in its level of confidence and accuracy of fol-
lowing such a path. The VPCs are used by rodents to override PI data
when possible (Arleo & Gerstner, 2000; Redish, 1999). This is true of
the ratbot when it has a goal in its camera’s FOV. Therefore, the bar-
rier’s corner acts as a signpost for rodents (Vorhees &Williams, 2014).
The ratbot’s currently does not have visual corner recognition (or other
types of signposts) as part of its navigation system. Such data would tie
into the navigation system’s place code, as it does with rodents.

Fig. 15. Dimensions of the ratbot’s FOV as seen by its camera in the 40° incline position. Fig. 16. Configuration of internal boundary test between goal and home locations.
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System analysis

Power consumption

One of the goals we set for this navigation system was to require
relatively low power, such that the robot could easily carry the entire
navigation system on a small footprint. The dimensions of the ratbot are
approximately 21 cm long by 17 cm wide. The height of the chassis on
the front of the ratbot is 25.5 cm. The ratbot currently carries two 12 V,
2000 mAh battery packs. However, only one of the batteries is currently
used to power the entire system. The second battery is dedication to an
Arduino Yun microprocessor board, which is used during debugging
only. The Yun microcontroller board becomes a WiFi access point,
which a laptop can connect to and receive debug data from. The
average running voltage and currents for processors onboard the ratbot
are tabulated in Table 1. An estimated power of 2.5 watts is being used
by the processors (in addition to some sensors).

Most of the power consumed by the system is by the two 12 V
motors, which can draw up to 530 mA each. That is a potential 12 W for
the two motors alone. However, normal cruising speed for the ratbot is
less than half of maximum and is used on a level, hard surface. Thus,
the power used by the motors is likely to be 6 W at maximum, given the
max power of the battery and the fact the ratbot can usually last 2 h or
so, until the battery dips to approximately 6 V.

The low processing power required is attributed to the low oper-
ating frequencies of the processors. For processor power consumption is
proportional to the operating voltage (squared) times the clock fre-
quency. The Atmel microcontrollers run at 16 MHz, the Pixy Cam’s
onboard NXP LPC4330 dual core processor operates at 204 MHz, and
the Xilinx Spartan 6 XC6SLX9 FPGA is run with a 50 MHz clock.

Navigation computations at a low frequency

The only time constraint on the main loop program’s (Fig. 11) time
is for the ratbot to stop and turn before hitting an obstacle. One can buy
time by either slowing down the robot’s movement, or giving enough
buffer range to turn after detection. The ratbot’s current loop time does
not require much of an obstacle range detect buffer (20 cm) and the
ratbot’s current speed is moderate. The current main loop time is
325 ms. This value gives good reaction time and is the baseline for
future modifications.

The vision system of the Pixy Cam can update at a rate of 50 frames
per second, and the visual x, y coordinate data are obtained in a tight
software loop in the interfacing microcontroller, which runs at 16 MHz.
Performing the visual recognition task and turn control signals external
to the central processor also decreases its impact on the main program’s
loop time.

The FPGA additionally removes processing time from the main loop
program by managing the BC FFs. This would be very time consuming
for the central processor in areas with many internal boundaries. Since
this task is performed in parallel on the FPGA, without the need for
feedback to the central controller, it is seamlessly out of the loop for the
management task. However, when non-goal memory path planning is
required, it would have been best if there was a processor core in the
FPGA, along with external RAM. This would allow for line intersection
calculations to be performed in the FPGA’s CPU and not require the

transmission of data back and forth between the FPGA and the central
processor for this task. The need for a core processor in the FPGA is
based on the fact that the FPGA doesn’t configure well to using floating
point numbers, trigonometric operations or the square root operation.

Computational complexity

As previously described, the occupancy grid method of environment
mapping requires a set amount of memory to hold its map data.
Depending on the amount of data used to record the occupancy of a cell
(e.g., binary value, statistical data, or three-dimensional data), greatly
affects the navigation system’s processing requirements and cap-
abilities. This is based on the need for full environment mapping, while
many samples (multi-view, multi-sensor) of each cell location are taken,
and Bayesian statistical analysis on that data. This does result in high
accuracy maps which helps greatly with path planning. Therefore, oc-
cupancy grids are used in many mobile robot applications, such as
driverless cars (Li & Ruichek, 2014) and the Mars rover (Volpe, Estlin,
Laubach, Olson, & Balaram, 2000). However, high location accuracy is
the cornerstone to making and using these maps. Path planning for the
occupancy grid application is typically accomplished using Dijkstra’s
algorithm or its heuristic variant, the A∗ algorithm. The run complexity
of these two algorithms are Ο(|E| + |V| log|V|) (minimum priority cue)
and Ο(|E|) respectively, where V is the number of nodes and E is the
number of edges in the graph. The amount of memory required to
perform these searches are equally large. Thus, searching for paths in
occupancy grids that cover large areas is very demanding time and
memory wise.

Our neurophysiologically based model trades detailed accuracy
(high precision mapping of every inch of the environment) with a less
exact and detailed method. However, that is how nature works. Thus, as
detailed in our approach to assigning PC FFs to key locations only, the
number of nodes (PC FFs) that need to be stored to memory are
minimal. Additionally, checking for straight vectors to key locations
allows for the possibility of finding an optimum path in very low
searching time: Ο(number of extended BC FFs). Large environments,
such as buildings can be subdivided into a connection of local maps, as
long as their coordinate systems can be aligned at key entry and exit
locations, or through the use of omnidirectional camera systems that
use ANN for visual alignment to salient distal cues. This reduces the
search time and memory required using the A∗ algorithm.

Discussion

We have demonstrated through the navigation tests performed
above that the ratbot can successfully emulate the integration of HD cell
(gyro) data with self-motion (wheel encoder) data to produce PI data.
When the ratbot approached previously found goal locations, any error
in PI data was overridden with visual data. This was visually observed
as the ratbot realigned itself from its calculated path, to a direct path to
the goal marker. This is normal with many animal species and insects
performing navigation tasks, as previously discussed. Additionally, a
place code (linked list of PC structures) is generated using VPC, BC and
PI data, as presented in our multimodal source model, and used by goal
memory for path planning. Thus, the high level functional model of the
rodent’s navigation related brain cells, as presented in this paper, shows

Table 1
Power consumption of Ratbot’s processors.

Processor type Note DC volts (V) DC amperes (mA) Power (mW)

Central Processor-Atmel ATmega2560 Plus 5 Ultrasonic Sensors &MEMS Gyro 5 128 640
Pixy Cam Dual Processor + Atmel ATmega328 Full Pixy Camera System 5 300 1500
Xilinx Spartan 6 XC6SLX9 FPGA 3.3 98.5 330

Total power 2470
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promising results and serves as a good template for lower level detailed
models.

The next step is to test out the ratbot in a larger, dynamic en-
vironment, where its planned path becomes blocked, causing for it to
search for a new path starting from its last departed PC FF to its target
location, while removing the blocked node (PC FF) from its search.
Another important step is to test out the ratbot’s ability to navigate in
various environments, such as a maze and a building with many rooms.
This will require an FPGA module with a built-in core processor and
external memory to better handle the ratbot’s path planning algorithm.

As our multimodal model shows, specialized navigation and spatial
awareness cells of a rodent are dependent to some degree on visual
cues (Burgess, Donnett, Jeffery, & John, 1997; Bush et al., 2014;
Knierim &Hamilton, 2011; Redish, 1999; Winter & Taube, 2014). Of
course, the caveat with using visual data in a mobile robot system, is the
ability to process this data fast enough to be used in real-time. Ad-
ditionally, information extraction requires deep learning neural net-
works (DNN), or similar, for image recognition. One possible solution is
to perform general purpose processing on a graphics processor unit
(GPGPU), such as DNN or convolutional neural networks (CNN). A
relatively low power (5–15 W) GPGPU solution that might be powerful
enough to perform these task is the NVIDIA® Jetson™ TX1 Module GPU
with 256 light weight parallel processor (CUDA®) cores. They can be
programmed using CUDA or cuDNN. Thus, the technology to perform
lower power ANNs are becoming more available.

Possible future directions in model computation

Stanford University and Sandia National Laboratories have been
working on creating a non-volatile organic electrochemical artificial
synapse for neuromorphic computing (van de Burgt et al., 2017). This
low-voltage, artificial synapse mimics the way neurons are connected in
the brain. Thus, the neural inspired system could theoretically learn and
keep its memory through the artificial synapse connectivity. Perhaps a
neuromorphic computing machine, which more closely mimics the
functionality of the brain than current processing systems, will be
realized in the future. A system with elements that more closely re-
sembles the dynamic learning structure of the human brain, and is si-
milar with respect to processing capabilities, power requirements and
size of the human brain.

Conclusions

We have presented and produced an efficient mobile navigation
model that is based on the properties of the rodents’ specialized navi-
gation and spatial awareness cells. This was accomplished at a high
level of abstraction, which allows for quick computations and a lower
memory requirement as compared to similar neural network based
systems and traditional mobile robot navigation systems previously
discussed. Additionally, we implemented two path planning capabilities
that best represent the speculated path planning capabilities of a ro-
dent. The first uses goal memory, while the second combines PI,
boundary memory, and the A∗ algorithm.

The use of data structures to represent PCs and BCs, and a gyroscope
to represent HD cells worked out well for the small environment the
robot was tested in. Not using ANNs for these rodent specialized na-
vigation and spatial awareness cells did not affect the accuracy of how
these cells naturally perform. However, VPCs need to be ANN based to
give the robot a more natural way of identifying objects, classifying
them, and learning them, without the need for engineering the en-
vironment. This is required to remove the PC and BC location accuracy
dependency from purely PI and egocentric landmark recognition data,
to more of an allocentric distal cue recognition system for relative po-
sitioning.
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